LOGIN

力学引导的微尺度三维结构组装及其应用

本报告介绍一种力学引导的微尺度三维结构组装方法,该方法将屈曲力学的原理与现代化半导体产业中非常成熟的平面制备工艺相结合,将容易成型的二维薄膜图案通过压缩力的作用变形成目标三维结构。通过引入剪纸/折纸、叠层、可重构等设计概念,建立基于力电热多场驱动以及加载路径控制的组装策略和实验方法,形成了一套可适用于各种高性能材料和复杂几何拓扑的三维微结构组装方法体系。该组装方法在可重构电子器件、微型机器人、生医器件等方面有重要应用前景。

images
no
金属增材制造的多尺度多物理场前沿计算方法
images Yanping Lian
images
10
如何准确预报材料结构地强度和局域化变形
images Yinan Cui
images
10
非线性振动能量俘获机理及其应用研究-周生喜
images Admin R.E.
images
10
仿蠕虫折纸机器人和折纸结构动力学-方虹斌
images Admin R.E.
images
10
Artificial Sense Technology-陈晓东
images Admin R.E.
images
10
Nanomaterial-enabled Soft Electronics and Soft Robotics: A Few Mechanics Considerations
images Admin R.E.
images
10
力学驱动的非常规网状软材料设计与制造
images Yihui Zhang
images
no
基于机器学习的湍流模型研究进展-王建春
images Admin R.E.
images
no
TopOpt Webinar 202205
images Suguang Dou
images
10
The latest progress in the research of nano-added phase/polymer-based systems for sensing nanocomposites
images Admin R.E.
Show More
10

Score

Yihui Zhang
  • Video language: Chinese
  • Related paper #1
  • Journal name: Nature Reviews Materials
  • Periodical year: 2017
  • Paper name: Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
  • Authors: Zhang YH*, Zhang F, Yan Z, Ma Q, Li XL, Huang YG, Rogers JA*
  • Doi: https://www.nature.com/articles/natrevmats201719
  • Related paper #2
  • Journal name: Advanced Materials
  • Periodical year: 2019
  • Paper name: Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving and Buckling Approaches
  • Authors: Cheng X, Zhang YH*
  • Doi: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201901895
  • Related paper #3
  • Journal name: Science
  • Periodical year: 2015
  • Paper name: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
  • Authors: Xu S†, Yan Z†, Jang KI, Huang W, Fu HR, Kim JH, Wei ZJ, Flavin M, McCracken J, Wang RH, Badea A, Liu Y, Xiao DQ, Zhou GY, Lee JW, Chung HU, Cheng HY, Ren W, Banks A, Li XL, Paik U, Nuzzo RG, Huang YG*, Zhang YH*, Rogers JA*
  • Doi: http://science.sciencemag.org/content/347/6218/154.short
  • Related paper #4
  • Journal name: Nature Materials
  • Periodical year: 2018
  • Paper name: Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
  • Authors: Fu H†, Nan K†, Bai W, Huang W, Bai K, Lu L, Zhou C, Liu YP, Liu F, Wang J, Han M, Yan Z, Luan H, Zhang YJ, Zhang YT, Zhao J, Cheng X, Li M, Lee JW, Liu Y, Fang D, Li X, Huang YG*, Zhang YH*, Rogers JA*
  • Doi: https://www.nature.com/articles/s41563-017-0011-3
  • Related paper #5
  • Journal name: Science Advances
  • Periodical year: 2020
  • Paper name: Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy
  • Authors: Bai K, Cheng X, Xue Z, Song H, Sang L, Liu F, Zhang F, Luo X, Huang W, Huang Y, Zhang YH*
  • Doi: https://advances.sciencemag.org/content/6/30/eabb7417
  • Related paper #6
  • Journal name: National Science Review
  • Periodical year: 2020
  • Paper name: Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms
  • Authors: Pang W, Cheng X, Zhao H, Guo X, Ji Z, Li G, Liang Y, Xue Z, Song H, Zhang F, Xu Z, Sang L, Huang W, Li T, Zhang YH*
  • Doi: https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwz164/5610793
  • Related paper #7
  • Journal name: Advanced Materials
  • Periodical year: 2020
  • Paper name: Inverse design strategies for 3D surfaces formed by mechanically guided assembly
  • Authors: Fan Z†, Yang Y†, Zhang F, Xu Z, Zhao H, Wang T, Song H, Huang Y*, Rogers JA*, Zhang YH*
  • Doi: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201908424
  • Related paper #8
  • Journal name: Journal of the Mechanics and Physics of Solids
  • Periodical year: 2018
  • Paper name: A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures
  • Authors: Fan Z, Hwang KC*, Rogers JA, Huang YG, Zhang YH*
  • Doi: http://www.sciencedirect.com/science/article/pii/S0022509617307627
  • Related paper #9
  • Journal name: Journal of the Mechanics and Physics of Solids
  • Periodical year: 2019
  • Paper name: Mechanics of bistable cross-shaped structures through loading-path controlled 3D assembly
  • Authors: Luo G†, Fu H†, Cheng X, Bai K, Shi L, He X, Rogers JA, Huang Y, Zhang YH*
  • Doi: https://www.sciencedirect.com/science/article/pii/S0022509619301851
  • Related paper #10
  • Journal name: Physical Review Applied
  • Periodical year: 2019
  • Paper name: Optimization-based approach for the inverse design of ribbon-shaped three-dimensional structures assembled through compressive buckling
  • Authors: Xu Z†, Fan Z†, Fu H, Liu Y, Zi Y, Huang Y*, Zhang YH*
  • Doi: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.054053
  • Related paper #11
  • Journal name: Advanced Materials
  • Periodical year: 2021
  • Paper name: An anti-fatigue design strategy for three-dimensional ribbon-shaped flexible electronics
  • Authors: Cheng X, Zhang F, Bo R, Shen Z, Pang W, Jin T, Song H, Xue Z, Zhang YH*
  • Doi: https://onlinelibrary.wiley.com/doi/10.1002/adma.202102684
  • Related paper #12
  • Journal name: PNAS
  • Periodical year: 2019
  • Paper name: Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling
  • Authors: Liu Y†, Wang X†, Xu Y, Xue Z, Zhang Y, Ning X, Cheng X, Xue Y, Lu D, Zhang Q, Zhang F, Liu J, Guo X, Hwang KC, Huang Y*, Rogers JA*, Zhang YH*
  • Doi: https://www.pnas.org/content/early/2019/07/16/1907732116
  • Related paper #13
  • Journal name: PNAS
  • Periodical year: 2015
  • Paper name: A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes
  • Authors: Zhang YH†, Yan Z†, Nan KW, Xiao DQ, Liu YH, Luan HW, Fu HR, Wang XZ, Yang QL, Wang JC, Ren W, Si HZ, Liu F, Yang LH, Li HJ, Wang JT, Guo XL, Luo HY, Wang L, Huang YG*, Rogers JA*
  • Doi: http://www.pnas.org/content/112/38/11757.short
0 comments
images
Yihui Zhang
images
10

力学驱动的非常规网状软材料设计与制造

通过借鉴或突破天然有机生物系统中的微观结构构造,可望实现具有类似力学性能的仿生软材料,甚至实现天然材料不具备的超常规力学及物理性能(例如负泊松比、负溶胀等),在生医器件、组织工程、软体机器人等领域中具有非常重要的应用前景。然而,自然界中的很多生物软材料具有非常复杂的微观结构构造,有时还体现出一定的随机性分布特征,使其仿生设计变得十分挑战。本报告围绕力学驱动的非常规网状软材料的设计与制造展开介绍。一方面,将介绍受生物体胶原组织微观构造启发而建立的仿生软材料设计,其核心思想是将马蹄型及螺旋型微结构与点阵构型相结合,进而基于常规工程材料再现出生物体的复杂力学行为,并通过建立仿生网状软材料的非线性细观力学理论,揭示出弹性模量、延展率等关键力学性能与微结构构型之间的依赖关系,实现可精确匹配皮肤以及心脏组织应力应变曲线的缺陷不敏感仿生材料。另一方面,将介绍在周期性网状材料中引入任意曲线微结构和复合微结构的多级点阵设计概念,建立基于多级点阵的软质力学超材料的非线性变形理论及设计方法,制备出具有超大负溶胀、各向异性负溶胀、热致纯剪切等非常规性质的网状超材料,还实现了材料泊松比在-1到1范围内的精确调控及大变形各向同性的性质。最后介绍所发展的网状软材料在医用支架、生医器件等领域的应用。

Released on August 21, 2020
Show More